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Abstract

Student performance in STEM disciplines is shaped by a variety of socio-economic,
psychological, and behavioral factors, making causal inference a vital tool for dis-
entangling true causal relationships from mere associations. In this paper, we
introduce a novel residual neural architecture, ResNCM, which enhances Neural
Causal Models by incorporating ResNet-style blocks for greater expressivity, sta-
bility, and support for categorical variables. We evaluate ResNCM on two rich
educational datasets and demonstrate its superiority over classical machine learning
and baseline deep learning models, achieving an accuracy of 89.98% on depression
prediction and 93.39% on math score estimation. Beyond predictive performance,
our model enables counterfactual reasoning to uncover actionable insights. No-
tably, we identify a direct causal effect of gender on math scores, where female
students consistently outperform male peers, even after accounting for mediating
and confounding variables. This work underscores the importance of integrating
causal reasoning into educational Al and provides a scalable framework for future
interventions.

1 Introduction

Educational outcomes in Science, Technology, Engineering, and Mathematics (STEM) fields are
influenced by a web of interdependent factors, ranging from psychological well-being and family
background to socio-economic status and school-level variables. Traditional statistical and deep
learning approaches often conflate correlation with causation, leading to misleading insights that may
reinforce existing inequities rather than mitigate them. In this work, we seek to go beyond predictive
modeling by leveraging causal inference to uncover actionable pathways that directly impact student
performance in STEM domains.

The need for causal reasoning in educational data analysis is paramount. Consider the case where
students from higher socio-economic backgrounds perform better not due to innate ability, but because
of access to private tutoring or greater study time—resources not uniformly distributed. Observational
models may misattribute performance gains to immutable traits like demographic features, rather
than underlying structural causes such as academic support or mental health. Causal models, on the
other hand, enable counterfactual reasoning: we can ask, for instance, how a student’s grades might
have changed had they received proper test preparation or faced less work pressure. This capacity is
essential for fair and effective policy interventions.

Despite its promise, causal inference remains underutilized in practical machine learning applications
due to its theoretical complexity and strict identifiability assumptions. Recent advancements in Neural
Causal Models (NCMs) offer a bridge between the rigor of causal inference and the scalability of
deep learning. Introduced in|Xia et al.| [2022], NCMs generalize Structural Causal Models (SCMs) by
representing each structural equation with a neural network, allowing for expressive and data-driven
discovery of complex causal relationships, including counterfactuals.
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In this paper, we implement a robust NCM framework on two real-world-inspired educational datasets
to explore the true drivers of student success in STEM. Our key contributions include:

* A comprehensive preprocessing and feature engineering pipeline for two high-dimensional,
noisy educational datasets.

* A novel ResNet-based mode, ResNCM, capable of estimating counterfactual outcomes and
isolating direct, indirect, and spurious effects.

* Empirical evaluations comparing NCMs with classical and deep learning models, demon-
strating superior accuracy and interpretability.

» Counterfactual case studies revealing how modifiable variables (e.g., study hours, test
preparation) causally affect academic performance.

The remainder of the paper is organized as follows. In Section[2] we discuss the theoretical foundations
of causal inference and review related work. Section [3] describes the datasets and preprocessing
procedures. Section ] outlines our model architecture, training strategies, and causal graph design.
Section [5] presents our experimental results, including counterfactual analyses. Finally, Section [6]
summarizes our findings and outlines future directions.

2 Background and related work

This paper’s contribution is a unique and thorough implementation of the Neural Causal Model, which
is at the intersection of Artificial Neural Networks and Judea Pearl’s Causal Inference, modified
to handle large amounts of data and infer complex causal relationships. This section highlights
significant works that served as the theoretical backbone of our model.

Structural Causal Models and the Causal Hierarchy. Structural Causal Models (SCMs) are the
primary unit of formal language to encapsulate an environment’s causal mechanisms. An SCM M
consists of:

* V: alist of the endogenous (observed) variables.

» U: alist of the exogenous (unobserved) variables.

» F: alist of functions that define the dependencies of each endogenous variable’s value. The
input variables for f,, are all parents of v.

» P(U): the probability distribution of the exogenous variables’ values.

The SCM induces the Pearl Causal Hierarchy, which consists of three layers: observational (L1),
interventional (L2), and counterfactual (L3) |[Pearl and Mackenzie| [2018]]. Although our work
primarily invokes L3, knowledge of the other two layers is essential to conducting meaningful
analysis of the datasets’ causal relationships.

Fairness. In this paper, we use the Standard Fairness Model developed in |Plecko and Bareinboim
[2022]], which provides a framework for determining direct effects, indirect effects, spurious effects,
etc. in parameterized datasets. As detailed in Section 4, we designed an expanded fairness model that
maintains the necessary causal relationships in high-dimensional environments.

)
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Figure 1: Neural Casual Model



Neural Causal Models for Counterfactual Inference. The Neural Causal Model (NCM) |1|intro-
duced in [Xia et al.,[2022] is a wrapper for the SCM that replaces each variable’s function in F with
a feed-forward neural network. The endogenous and exogenous variables V' and U remain the same,
and the exogenous distribution P(U) is sampled from simple priors. In [Xia and Bareinboim, 2024],
it is proven that any NCM with a specified causal diagram G automatically satisfies all L3 (counterfac-
tual) equality constraints implied by G. Although the architecture described in the paper is minimal
and fit for theoretical "toy" experiments, it was the starting point of this paper’s implementation of an
NCM for counterfactual inference in real data that has complex causal mechanisms.

Expressiveness vs. Learnability in Causal-Neural Models. The significance of the NCM for
causal inference was demonstrated in [Xia et al.l|2021]]. More specifically, Xia et al. showed that
universal approximation alone is insufficient for bridging the gap between observational fitting and
either interventional or counterfactual reasoning by applying the Causal Hierarchy Theorem to a
neural setting. Through these contributions, we were driven to apply the nominal concept of the
NCM in a significant deep learning setting to draw meaningful conclusions about data that other deep
learning approaches are now proven to be incapable of drawing.

Other Neural Approaches to Causal Inference. Beyond NCMs, various deep-learning approaches
have been proposed for causal effect estimation under stronger assumptions. Representation-learning
methods leverage balancing networks or domain-adversarial training to adjust for confounding
under backdoor conditions [??]. Generative models—including GANSs [?], normalizing flows, and
variational autoencoders—have been employed to model interventional distributions in Markovian
settings [??]. However, these methods typically focus on L2 estimation under no-unobserved-
confounders or specific graph structures, and do not address general counterfactual identification in
non-Markovian SCMs. On the other hand, this paper conducts meaningful L3 analysis even with a
loose and flexible graph structure, and in the presence of unobserved confounders.

Our work builds directly on these two threads: we expand on the NCM framework of Xia et al.|[2022]
and the theoretical insights of Xia et al.| [2021]], extending them to STEM education datasets. In
particular, we conduct counterfactual analyses of academic performance, demonstrating how NCMs
can yield actionable insights in real-world, high-dimensional educational settings that non-causal
machine learning approaches cannot.

3 Dataset Description

3.1 Dataset 1: Student Depression Dataset

To model causal relationships affecting student performance in STEM fields, we selected the Student
Depression Dataset sourced from Kaggle B .|[2022]. This dataset provides rich contextual information
on psychological, academic, and demographic factors, making it particularly suitable for causal
inference in educational settings.

The dataset comprises records of individual students, with each row representing a unique student
and each column detailing a specific attribute. Key features include:

* Demographics: Age, Gender, City

* Academic performance: CGPA, Study Satisfaction, Work/Study Hours

* Lifestyle: Sleep Duration, Dietary Habits

* Psychological indicators: Depression Status (target variable), Suicidal Thoughts, Family
History of Mental Illness

¢ Stress and pressure: Academic Pressure, Work Pressure, Financial Stress

The target variable is Depression_Status, a binary label indicating whether a student is experi-
encing depression (Yes or No), serving as a proxy for mental health status that may influence STEM
performance outcomes.

Benefits of Dataset Selection

This dataset was chosen for several key reasons:



* Multidimensional Factors: It captures a wide array of variables influencing both mental
health and academic performance—crucial for identifying confounding and mediating
variables in causal inference.

* Granularity and Diversity: The inclusion of diverse educational backgrounds, lifestyle
choices, and psychological factors enables detailed subgroup analysis within the STEM
domain.

* Applicability to Interventions: Understanding causal pathways through this data can
inform actionable policies for improving student well-being and academic outcomes.

Cleaning and Preprocessing

The raw dataset required substantial preprocessing to ensure consistency, interpretability, and suitabil-
ity for downstream neural causal modeling tasks:

1. Encoding Categorical Variables:

* Gender was mapped to binary values (Male =0, Female = 1).
¢ Sleep duration was binarized (< 5 hours = 0, otherwise = 1).
* Dietary habits and family history of mental illness were encoded as binary values.
* Suicidal ideation was transformed into a binary feature.
2. Numerical Type Casting: Features such as Age, Study Satisfaction, Work/Study

Hours, and Financial Stress were cast to integer types to ensure compatibility with
numerical models.

3. Educational Background Representation: Degree programs were first mapped to their
full-text equivalents. Two categorical abstractions were derived:

* Degree Level (e.g., undergraduate, postgraduate, doctoral)
* Domain (e.g., Technology, Science, Arts)

4. Text Embedding and Clustering: Degree names were embedded using a pre-trained
transformer model (all-MinilLM-L6-v2) from SentenceTransformers. The resulting 384-
dimensional vectors were clustered using K-Means (k = 4), introducing a new feature,
degree_cluster.

5. Dimensionality Reduction: To enable interpretable modeling, PCA was applied to the
degree embeddings, and the top 5 principal components were retained as new

3.2 Dataset 2: Students Exam Scores Dataset

The second dataset used in our study is the Students Exam Scores Dataset, obtained from Kaggle [Kim+{
mons|[2023]]. This dataset includes standardized test scores in three subjects—Mathematics, Reading,
and Writing—along with a variety of socio-economic and personal factors that potentially influence
academic performance. The dataset is synthetic and intended for educational purposes, consisting of
over 30,000 records, which significantly exceeds the size of similar publicly available datasets.

This extended version includes 15 distinct features, many of which exhibit missing values, making it
ideal for testing preprocessing pipelines and robustness in neural causal inference models.

Each row in the dataset corresponds to a unique student, with features covering:
* Demographics and Family Background: Gender, Ethnic Group, Parental Education,
Parent Marital Status, Is First Child, Number of Siblings
* Socio-economic Status: Type of Lunch, Weekly Study Hours, Transport Means
* Behavioral Factors: Test Preparation Completion, Sport Practice Frequency
* Academic Performance: Scores in Math, Reading, and Writing (0-100 scale)

These factors provide a holistic view of a student’s learning environment and behavior, supporting
the discovery of nuanced causal relationships that affect STEM outcomes.



Benefits of Dataset Selection
Key advantages of using this dataset include:

» Large Sample Size: With over 30,000 samples, the dataset allows for high statistical power
in both causal discovery and effect estimation.

* Diverse Attributes: It includes categorical and ordinal variables covering psychological,
social, and academic dimensions—critical for disentangling causal pathways.

* Realistic Noise and Missingness: The presence of incomplete records reflects real-world
data conditions, making this dataset suitable for evaluating the robustness of preprocessing
and inference methods.

Cleaning and Preprocessing

To prepare the data for causal analysis, the following preprocessing steps were applied:

1. Column Removal: An unnecessary index column (Unnamed: 0) was dropped from the
dataset.

2. Encoding Categorical Variables:

* Gender: Encoded as binary (male =0, female = 1)
* EthnicGroup: Mapped from group A-E to integers 0—4
* ParentEduc: Categorized based on educational attainment:
High school or less =0
Some college or associate’s degree = 1
Bachelor’s degree = 2
Master’s degree = 3
* LunchType, TestPrep, IsFirstChild, TransportMeans: All converted to binary
indicators
* ParentMaritalStatus: Encoded as ordinal categories:
— Single = 0, Divorced = 1, Widowed = 2, Married = 3
* PracticeSport: Mapped to frequency scale (Never = 0, Sometimes = 1, Regularly =
2)
* WklyStudyHours: Discretized into ordinal scale:
— <5hrs=0,5-10hrs=1, >10 hrs =2
3. Missing Values: Basic imputation strategies were considered for handling missing data
(e.g., mode or median imputation), though more advanced imputation may be performed in
later modeling stages.

This preprocessing schema ensures that the dataset is numerically encoded and cleansed, enabling
its seamless integration with deep causal models for estimating the effects of socio-economic and
behavioral factors on STEM performance outcomes.

4 Methodology

For each dataset, we start by creating a projection of the data features onto the standard fairness
model and initializing our neural causal model based on the resulting graph. We then process the
data, and train our NCM on the processed data. Once trained, we are able to evaluate counterfactual
queries from the model.

4.1 Model Architecture

Our Neural Causal Models (NCMs) are built by instantiating one neural network per node in the
causal graph G, each network f,, learning the structural equation

v = fv(Pag(v), Uv),

where Pag(v) are the parent variables in G and U, is exogenous noise. We compare two instantiations
of these per-node networks:



Feed-Forward Neural Causal Model (FF-NCM). Following [Xia et al.| [2022], each f, is a vanilla
multi-layer perceptron (MLP) implemented in mlp.py and wired up in feedforward_ncm.py.
Concretely:

* Inputs: concatenation of parent embeddings {v;} and noise samples {U,, }.

* Architecture: a stack of h_layers linear layers (default 2), each of width h_size (default
128), with LayerNorm + ReLU activations, followed by an output layer and a Sigmoid.

* Initialization: Xavier normal on all linear weights.

* Noise prior: uniform over {U, }.

This FF-NCM is simple and broadly applicable, but can suffer from limited depth making it harder
to model very complex interactions, and from having no specialized support for high-cardinality
categorical parents.

Residual Neural Causal Model (ResNCM). To address these limitations, we developed a residual-
block variant (resnet.py and residual_ncm.py) in which each f, is implemented as a ResNet:

* Categorical embeddings: for any discrete parent p, we learn an embedding Embed,, of
size dp.

* Input projection: numeric parents, embeddings, and noise are concatenated into x €
R*-%*#¢_ then linearly projected to a hidden residual signal X.;.

* i-layer core with skip:
h; = ReLU(LN(W;x)), ..., r = Dropout(h, + Xp0;)-

* QOutput head: a final linear layer plus Sigmoid produces the predicted v.
» Hyperparameters: hidden size h_size (default 128), dropout (default 0.1).

The residual connection and LayerNorm ensure stable gradient flow even as depth increases, and the
learned embeddings enable compact, expressive handling of categorical variables. This is especially
important for this paper’s objective of applying NCMs to complex, high-dimensional data.

Comparison and Advantages.

» Expressivity: ResNet blocks capture higher-order interactions via deeper representational
paths, whereas the vanilla MLP is shallower.

» Gradient stability: skip connections mitigate vanishing/exploding gradients, speeding
convergence in ResNCM.

» Categorical support: FF-NCM treats all inputs numerically; ResNCM explicitly embeds
discrete parents, reducing parameter waste on one-hot inputs.

* Regularization: Dropout in ResNCM improves robustness to overfitting, especially in
smaller datasets.

¢ Plug-and-play: Both models share the same SCM interface (SCM base class) and noise
prior; swapping in ResNet layers requires only changing the ‘f* module in ResNCM versus
FF_NCM.

Empirically (see Section [3]), our ResNCM consistently achieves faster training convergence, higher
accuracy, and higher confidence on both outcome and feature predictions compared to the FF-NCM
baseline.

Causal Diagram. Successful implementation of a Neural Causal Model requires not only a robust
neural network architecture for learning the functions, but also a causal diagram G that defines the
causal relationships between variables and ultimately induces the SCM. We created an expanded,
flexible version of the Standard Fairness Model [Plecko and Bareinboim! [2022]] that is capable of
handling high-dimensional data without sacrificing the causal relationships, represented by directed
edges for effects and bidirected edges for confounding.



4.2 SFM Projection

We started by projecting our real data features onto the SFM[2]

Depression Projection

X Gender
Z Age, Sleep Duration, Family History of Mental Illness

W Academic Pressure, Work Pressure, CGPA, Study Satisfaction, Dietary
Habits, Suicidal Thoughts, Work/Study Hours, Financial Stress,
Degree Level, Degree Cluster

Y Depression
Exam Scores Projection

X Gender

Z Ethnic Group, Parent Marital Status, Is First Child, No. Siblings,
Transport Means

W Parent Edu., Lunch Type, Test Prep, Practice Sport, Weekly Study
Hours, Reading Score, Writing Score

Y Math Score

Demographic variables
7

Protected
Attribute

Y
Outcome

Mediators

Figure 2: SFM Graph

4.3 Training Methods

Originally, we were trying to train the model data point by data point, but this was ineffective. In
doing that, we were effectively training each network separately:
. fy was learning from real inputs X, W, Z, generated input Uy, and real label Y.
* Each fW,i was learning from real inputs X, Z, generated input Uyy,, and the real label W;.
* Each f z, was learning only from the generated input Ux z, and the real label Z;.
. f x was learning only from the generated inputs Ux z and the real label X.
This meant that while our fy network was able to generate Y values with relatively high precision,
our fx and fz networks were effectively random guessing.

By the principles of Neural Counterfactual Identification, we don’t need to have a model that is
completely accurate at each individual point. So long as the resulting probability distribution P(V')
agrees with the observed distribution P(V'), and they can be described by the same causal graph ¢,

the answers to counterfactual queries evaluated on NCM M will equal the true counterfactual values
within some small margin of error.



Algorithm 1 Basic NCM training pseudo-code
procedure TRAIN-NCM(data=D,¥)
M < NCM(V,%9)
Initialize parameters 6
for each epoch do
loss <0
for each batch of real datapoints in Ddo
P(V) < probability distribution of this batch

P(V) « M(0).sample(n) > where n is the size of this batch
loss « loss + divergence between P(V) and P(V)
end for
Update 6 based on loss
end for

end procedure

This was adapted from Algorithm 3 in Xia et al.[[2022]]. We kept lines 1-4 effectively the same. In
Algorithm 3, iterating from £ to ¢ affects only the variables V, and nj;, which are effectively the
batch and batch size respectively. Note that typically in causal inference, the notation V,qriqpie With
respect to V = {endogenous_variables} indicates an interventional distribution. So V,, would
typically indicate "variables that have been intervened on to set Z = z;". Typically, real-world data
is not interventional; all of our data is observational. However the pseudocode in [Xia et al.|[2022]
was written in this way to accommodate interventional data sources, such as in a randomized control
trial. Because we are operating on observational data, it is fine for us to get the batch from a standard
Torch DatalLoader object instead.

Unlike Algorithm 3, our pseudo-code does not specify a query, nor does it calculate a minimum and

maximum P, loss, or 8. We omit the query because this is just used to track how a given query changes
from epoch to epoch. We opted instead to wait until the model was fully trained, and evaluate queries
based on this trained model instead. The minimization and maximization, on the other hand, is used
to figure out whether a given query is identifiable. Specifically, if P4, (query) # Ppin(query),
then the query is not identifiable. If the two probabilities are equal, then they are both equal to the
true value P(query). Xia et al.[[2022] However we are using a projection onto the standard fairness
model and measures which are known to be identifiable from the observational distribution and class
of SCMs Q%M 50 we know that our queries will be identifiable. Therefore we are able to use only
one set of parameters for our model, and we know that it will return the correct answer to our query.

4.3.1 Divergence Calculation

To evaluate the divergence for loss calculations during training we needed a divergence function that
can work with samples directly. This ruled out many popular divergence metrics like Kullback-Leibler,
which measures how a probability distribution differs from a true probability.

Popular sample-based divergence metrics include maximum mean discrepancy (MMD), Wasserstein
distance, energy distance, k-nearest neighbors, and classifier-based divergences. Of those, the k-
nearest neighbors algorithm does not handle high dimensions well, and Wasserstein is computationally
expensive. We implemented an energy based divergence method, MMD, and Jensen-Shannon diver-
gence (which is a type of classifier-based divergence). Of those, MMD was the most discriminatory.
For example, on our depression data set, the final testing accuracy was evaluated as follows:

Depression Data Exam Score Data
Gender Depression | Gender MathScore
energy-based | 96.16% 91.32% 95.57% 96.60%
js-divergence | 95.65% 89.97% 95.08% 96.26%
MMD 93.09% 89.98% 92.74% 93.39%
Table 1: Final test scores for X, Y on different divergence metrics.

We used MMD to train because it seemed to be the most discriminatory of the three.



4.4 Counterfactual Sampling

To evaluate a regular probability P(Y = 1), we could sample n points from the trained model and
calculate the frequency with which Y = 1 in the sample. To evaluate a conditional probability
P(Y = 1|X = z), we could sample n points from the model, filter out any samples for which
X # x, and again look for the frequency with which Y = 1 in the sample.

Evaluating an intervetional query, something like P(Y = 1|do(X = z), Z = z), you’d follow the
same steps as above, except when sampling from the model, you’d force X = x instead of calculating
X = fx, and then filter out values for which Z # z.

Confounders(ex.: Race, Age)

Outcome (ex.: Salary)

Mediators (ex.: Degree
Status, # Academic Awards)

Figure 3: Diagram representing counterfactual P(Yx—ns wy_,)

A counterfactual query is a bit more complicated. P(Yx—, = 1|Z = z) implies that Y has been
intervened on to force X = z, but that Z was unaffected by that intervention. So you might calculate
P(Yx—, = 1|Z = z) by first sampling the exogenous variables, feeding them into the model to get
the full probability distribution P(V/), filtering out values for which Z # z, and then re-sampling the
model by feeding it the filtered exogenous variables, and forcing X = x. The sampling procedure is

detailed in the algorithm below. You could take that sample, then look for the frequency with which
Y =1

Algorithm 2 Basic Counterfactual Sampling

procedure SAMPLE-CTF-BASIC(scm, term=CTFTerm, conditions=None, u=None,
n=10000)

U < Conditioned-U(scm, u, conditions, n)

sample<—scm.sample (u=U,do=term.do-values)

return sample
end procedure

procedure CONDITIONED-U(scm, u=None, conditions=None, n=10000)
if u is None then
U < scm.pu.sample(n)
else
U<+ u
n < len(u.samples)
end if
if conditions is None then return U
end if
sample < scm.sample(u=U)
indices-to-keep <« set()
for c in conditions do
temp-indices ¢ indices where sample[c]==conditions[c]
indices-to-keep < indices-to-keep M temp-indices
end for
return U[indices-to-keep]
end procedure




Counterfactual queries can be more complex than that, though. The query P(Yx—,, W, =1 |X =
xg) is considered a "nested counterfactual". One would essentially follow the procedure above to
get the filtered U samples, and use those to get a list of samples for W,,,. You’d then use the same
U values to get another sample from the model, except instead of calculating X = fx, you’d force
X = x4, and instead of calculating W = f,,,, you’d force W to take on the values from the previous
sampled list. In this way, you force X = z; and W = W, even if W, varies depending on the
provided U value.

Algorithm 3 Counterfactual Sampling

procedure SAMPLE-CTF(scm, term=CTFTerm, conditions=None, u=None, n=10000)
U < Conditioned-U(scm, u, conditions, n)
expanded-dos < dict()
fork in term.do-values do
if k is nested then > Calculate nested counterfactual, update related variable
ctf-sample = Sample-CTF(scm, k.term, U)
expanded-dos [k.term] <—ctf-sample [k.term])

else > Force related variable to take a given value
expanded-dos [k.term] «—term.do-values [k]
end if
end for

sample<—scm.sample (u=U,do=expanded-dos)
return sample
end procedure

Common and useful counterfactual queries include:
* Natural Direct Effect: NDEy, 2, (y) = P(Yzr,w,,) — P(Yz,)
¢ Natural Indirect Effect: NIEy, 2, (y) = P(yzy,w.,) — P(Yz:)
* Total Effect: TE;, 5, (y) = P(Ys,) — P(Ys,) = NDE — NIE
The most relevant counterfactual queries related to fairness are the x-specific effects:
* 2DEy o (ylz) = P(yay,w,, |7) — P(ya,|®)
¢ 2I1Ey, 20 (ylz) = P(Yay w,, |2) — P(Ya,|2)

¢ xSEﬂChﬂCo (y) = P(ywo|x1) - P(ywo|x0)
* 2TE. 5, (y) = P(Ys, |2) — P(Yso|z) = 2DE — 2IE

* Total Variation: TV, 4, (y) = tDEy, &, (y|zo) — 2IEy, o, (y|x0) — 2SEy, 4, (y)

5 Results

5.1 Final Y Accuracy

Treating the NCM like a regular supervised learning model. We have compared our NCM model
against the best performing models from both Classical ML and Deep Learning. The results on
Depression and Exam Scores Dataset is given in Tables [2]and [3|respectively.
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Table 2: Accuracy Across Models On Depression Dataset

Models Accuracy
Decision Tree 82.07%
Random Forest 82.29%
Gradient Boosting 80.71%
LSTM 85.00%
K-Nearest Neighbors 80.15%
Support Vector Machine | 84.74%
ResNCM 89.98 %

Table 3: Accuracy Across Models for Exam Scores Dataset

Models Accuracy
Decision Tree 90.30%
Random Forest 90.64%
Gradient Boosting 83.03%
Bagging 92.43%
K-Nearest Neighbors 88.90%
Support Vector Machine | 93.11%
ResNCM 93.39%

5.2 Accuracy for Features!

While standard supervised learning doesn’t concern itself accuracies of the features used to train
the model. The final goal of Causal Models allow for us to observe the accuracy of predicting the
features used in training in addition to the labels. The results on Depression and Exam Scores Dataset
is given in Tables ] and [5| respectively.

Table 4: Accuracy Across Features for Depression Dataset

Models Accuracy
Gender 96.44%
Depression 90.93%
Academic Pressure 72.86%
Work Pressure 53.48%
CGPA 76.87%
Study Satisfaction 76.17%
Dietary Habits 72.78%
Age 84.65%
Sleep Duration 79.06%
Family History of Mental Illness | 91.97%

Table 5: Accuracy Across Features for Exam Scores Dataset

Models Accuracy
Gender 96.54%
Math Score 95.94%
Ethnic Group 78.93%
Parent Marital Status 76.79%
Is First Child 92.48%
Number of Siblings 62.97%
Transport Means 56.08%
Parent Education 55.90%
Lunch Type 88.82%
Test Prep 91.91%
Practice Sport 67.47%
Weekly Support Hours | 71.06%
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5.3 Counterfactual Analysis

In legal doctrines, there are two important concepts known as disparate treatment and disparate
impact. Disparate treatment doctrines state that a group should not be treated differently simply for
their membership in that group. This is associated with the causal concept of direct effect (DE): how
much a specific attribute directly impacts an outcome. Disparate impact doctrines dictate how much
a group may be affected by their membership in that group. For example, students in a given region
may have reduced access to tutoring, which in turn may impact their grades. Then the student’s
region indirectly impacts their grades through the variable access-to-tutoring. Disparate impact
is associated with the causal concepts of indirect effect (IE) and spurious effect (SE). An attribute
X may indirectly affect the outcome Y through mediator variables W if X impacts W and W
impacts Y. Spurious effect implies that Y is affected by some other attribute Z with which X may
be correlated (like how eye color and hair color may be correlated, despite the fact that neither one
causes the other — they are both caused by a person’s genetic makeup).

Causally, we look for existance of disparate treatment by evaluating zDE®*Y™(ylzg) =
2 (#DEyy 0, (y|xo) — ©DEy, 4, (y|wo)). If it is zero, then there is no evidence of disparate treat-

ment. For disparate impact, we look at 2] Y™ (y|zo) = (21 Ey, 4, (y|zo) — 21 Ey, 4, (y|z0)) and
xSEy, 4, (y) [Plecko et al.[[2024].

From our ResNet Neural Causal Model, we got the following results:

Depression Dataset | Exam Score Dataset
TE 4.34% 11.59%
NDE 1.98% 11.35%
NIE -2.36% -0.24%
2T E(y|z1) 4.79% 11.43%
xDE(y|xy) 2.41% 12.06%
2IE(y|z1) -2.38% 0.62%
xSE(y|x) -1.90% -3.15%
xDESY™ (y|zq) 1.98 11.79%
I E*Y™ (yla) 2.36 -0.35%

Table 6: Counterfactual query evaluations from each dataset

In theory we would say that there is evidence of discrimination anytime a relevant value is nonzero,
however, in practice we allow for a 5% margin of error. This implies that gender does not have a
direct impact on students’ depression, but it does have a direct impact on math exam scores.

Interestingly, this wasn’t the same with other subjects.

Reading Score | Writing Score
xDESY™ (y|x1) -8.60% -5.57%
I BV (y|zq) -0.07% -0.33%
xSE(ylx) 6.21% 3.07%

Table 7: Counterfactual query evaluations based on different test scores

We tried taking ’ReadingScore’ and ’WritingScore’ out of the mediators when calculating
the effects on ’MathScore?, but the effects didn’t change enough to alter the causal implications.
Seems gender has a direct effect on students’ scores in all subjects. This could have to do with some
unobserved mediators. Just because we created a graph with a direct causal connection from X to Y
doesn’t mean there aren’t other attributes outside of our observed mediators 1/ that stand along that
path.

6 Conclusion

In this work, we presented ResNCM, a Residual Neural Causal Model, as a robust framework for
modeling causal relationships in high-dimensional educational datasets. Our model outperforms
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both traditional and neural baselines across key prediction tasks and enables counterfactual infer-
ence, allowing us to assess the real-world implications of modifying specific attributes in student
environments.

The strengths of our approach lie in its ability to jointly model structural equations across a flexible
causal graph while supporting expressive reasoning about direct, indirect, and spurious effects.
ResNCM demonstrates improved gradient flow and categorical variable handling through residual
connections and learned embeddings, making it particularly well-suited for datasets that include both
numerical and socio-demographic variables.

However, our findings are not without limitations. Causal interpretations are constrained by the
structure of the assumed causal graph, and the presence of unobserved mediators may distort true
causal pathways. For instance, although we identified a direct gender effect on math scores, latent
variables such as stereotype threat, school climate, or teacher bias—absent from our dataset—may
contribute to this relationship.

Looking ahead, we plan to extend the expressiveness of our causal modeling toolkit by integrating
generative models such as GANs into the NCM framework. This would enable a deeper exploration
of counterfactual distributions and improve performance in settings with limited or imbalanced data,
much like our successful integration of ResNet and MLP architectures in this work.
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