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Abstract

Imitation learning (IL) is widely used in robotics and control, yet current bench-
marks assume unconfounded environments. Realistic decision-making settings rou-
tinely violate these assumptions: unobserved confounding and partial observability
distort the relationship between an expert’s actions and the imitator’s observations,
causing standard IL algorithms to overfit to spurious correlations and fail to gen-
eralize. Although recent work in causal imitation learning (CIL) provides advance-
ments in addressing this challenge, these methods have only been evaluated in short-
horizon, low-dimensional domains. We propose CILBench, a benchmark assessing
IL under unobserved confounding and partial observability in high-dimensional,
long-horizon control tasks modified from OGBench. We further develop method-
ology and an accompanying API for extracting adjustment sets in long-horizon
environments, enabling scalable CIL algorithms. We observe that CIL methods
consistently outperform baselines across tasks, highlighting the necessity of causal
reasoning for robust imitation in complex control settings.

1 Introduction

Imitation learning (IL) has become a central paradigm in robotics and control, offering a practical
alternative to reinforcement learning (RL) in domains where online exploration is costly, unsafe, or
difficult to reward-engineer. Rather than optimizing a task-specific reward, an IL agent seeks to
reproduce the behavior of an expert given demonstrations, which are typically collected as state–
action trajectories from a policy deployed in the environment. This framework underlies a large
body of work in behavioral cloning, dataset aggregation, and inverse reinforcement learning (Ross
et al., 2011; Ziebart et al., 2008; Ho & Ermon, 2016; Fu et al., 2018), and is widely used in offline
RL pipelines and robotics applications (Levine et al., 2020; Fu et al., 2020).

A critical assumption underlying most IL algorithms and benchmarks is that expert and imitator
operate in an unconfounded environment. Concretely, the expert’s action at each time step is as-
sumed to be a function of the same observed state that will later be presented to the imitator. Under
this No Unobserved Confounders assumption (NUC), the expert’s policy is identifiable from obser-
vational data, and standard supervised or adversarial IL procedures can recover it given sufficient
demonstrations. However, realistic decision-making systems rarely satisfy NUC. In practice, expert
controllers often have access to additional sensors, internal states, or context not exposed to the im-
itator; physical conditions such as wind, friction, or payload can vary across time and episodes; and
sensing pipelines can be partially degraded or corrupted. All of these phenomena induce unobserved
confounding: latent variables that jointly affect the observed state and the expert’s actions, but are
not available to the imitator.

∗Work in progress. This v1 release includes only the AntMaze instantiation of CILBench. Additional environ-
ments and results will be included in v2.
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In the presence of such confounding, naive IL methods that treat logged state–action pairs as if they
were generated by a fully observed Markov decision process will in general fail to recover the expert’s
behavior. The situation is further complicated by the fact that the logged state in the dataset need
not coincide with the information set on which the expert actually conditions. In many realistic
settings, the expert’s policy is a function of a rich state vector while the imitator observes only a
strict subset or a corrupted projection of it, making partial observability a source of confounding
in IL. From the imitator’s perspective, the demonstrations then encode a mixture of effects: the
expert’s response to latent confounders and expert-only state components, partially aliased through
the observed variables. Training on these state–action pairs without accounting for the mismatch
in observation spaces leads the imitator to overfit to spurious correlations between the observed
features and the expert’s actions. The resulting policies may perform well on the demonstration
distribution but generalize poorly under new realizations of the confounder or in deployment envi-
ronments that differ slightly from the training conditions. This issue becomes especially pronounced
in long-horizon, high-dimensional control tasks, where compounding errors and covariate shift can
significantly degrade performance.

1.1 Causal Imitation Learning and Its Limitations

Recent work in causal imitation learning (CIL) formalizes and addresses the challenge of IL under
unobserved confounding using causal graphs and structural causal models (SCMs). Zhang et al.
(2020) introduces a non-sequential setting in which the expert’s behavior is modeled via an SCM
with latent confounders, and derives the graphical π-backdoor criterion to characterize when the
expert’s policy is imitable, or identifiable from observational data. Kumor et al. (2021) extend this
framework to sequential decision-making, introducing the sequential π-backdoor criterion in causal
MDPs for sequential imitability and providing algorithms that construct per-step adjustment sets
that deconfound the expert’s actions. Building on these ideas, Ruan et al. (2023; 2024) develop
CIL methods based on inverse reinforcement learning and partial identification, respectively, and
demonstrate the possibility of an imitator surpassing expert performance.

Despite this progress, existing evaluations of CIL remain largely restricted to low-dimensional, short-
horizon settings: small discrete MDPs, low-dimensional continuous systems, or simplified driving
scenarios. In these domains, the causal graphs are small, the time horizon is short, and the ad-
justment sets implied by the sequential π-backdoor criterion remain sensible. By contrast, modern
continuous-control benchmarks, including those based on MuJoCo and related physics engines, fea-
ture state spaces with tens to hundreds of dimensions, continuous action spaces with many degrees
of freedom, and horizons on the order of hundreds or thousands of steps. In such settings, naive
application of existing CIL algorithms leads to adjustment sets whose size grows with the horizon,
making both estimation and representation learning intractable.

At the same time, there is a growing recognition that unobserved confounding and partial observ-
ability are not edge cases but the norm in real-world robotics and control. Experts may rely on
closed-loop internal states that are not logged; some sensors may fail or be removed during deploy-
ment; and external conditions such as friction, load, or disturbances may fluctuate across episodes.
These factors motivate the need for CIL methods that scale to high-dimensional, long-horizon envi-
ronments, and for benchmarks that reflect these practical challenges.

1.2 Benchmarks for Imitation Learning Under Confounding

Parallel to advances in algorithms, recent years have seen substantial effort devoted to building
standardized benchmarks for offline and goal-conditioned RL, such as D4RL (Fu et al., 2020), OG-
Bench (Park et al., 2025), and related suites (Towers et al., 2024; Todorov et al., 2012; Tassa et al.,
2018; Yu et al., 2019). These benchmarks provide high-quality datasets and well-defined tasks, but
their underlying environments are Markov and unconfounded. Consequently, empirical evaluations
of CIL have remained disconnected from the broader ecosystem of RL benchmarks, and the commu-
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nity lacks a standardized tool to assess whether causal methods provide tangible benefits in complex,
high-dimensional environments.

1.3 Contributions: CILBench

In this work, we introduce CILBench, a benchmark for imitation learning under unobserved con-
founding and partial observability in high-dimensional, long-horizon control tasks. CILBench is built
by systematically augmenting MuJoCo-based environments from OGBench (Park et al., 2025) with
latent confounders and partial observability, and by providing a corresponding causal modeling and
algorithmic framework. The key components are:

• Confounded continuous-control environments. For each chosen OGBench task (e.g.,
antmaze, humanoid maze, manipulation domains), we construct an SCM that augments
the original environment with latent variables (e.g., wind fields, dynamics perturbations)
that influence both the system dynamics and the expert’s policy. We introduce partial
observability by hiding selected state components or replacing them with noisy aggregate
sensors, thereby inducing unobserved confounding between the expert’s actions and the
imitator’s observations.

• Scalable CIL for long-horizon tasks. We develop a methodology and API for computing
and exploiting sequential π-backdoor adjustment sets that is scalable to long-horizon envi-
ronments. Our approach combines: (i) causal graph extraction from the environment, (ii)
computation of base adjustment sets on short-horizon proxy graphs, and (iii) a windowed
trimming and encoding scheme that yields tractable, low-dimensional representations for
each time step. This pipeline enables both behavioral cloning and adversarial IL methods
to incorporate causal adjustment in high-dimensional settings.

• Expert construction. We provide a standardized procedure to construct high-performing
experts for each confounded environment by combining offline behavioral cloning on OG-
Bench datasets with online TD3 fine-tuning under the full confounded dynamics. These
experts are then used to generate demonstrations in the confounded environment, which
serve as input to both causal and non-causal IL algorithms.

• Empirical study. We evaluate Causal BC and Causal GAIL, instantiated with our long-
horizon adjustment pipeline, against naive BC and naive GAIL baselines that ignore con-
founding and condition on all endogenous variables. Across the suite of tasks, we observe
that naive IL often fails to reach navigation goals or to complete manipulation tasks, while
causal methods substantially improve performance and robustness. We further analyze the
impact of expert data quantity and confounder strength, and provide qualitative visualiza-
tions of the resulting policies.

• Extensible open-source infrastructure. CILBench is implemented as a set of
SCM/PCH environment wrappers and training utilities that integrate with existing RL
libraries. The code is a precursor to CausalGym, a more general framework enabling re-
searchers to easily define new confounded environments and to assess causal algorithms for
a broader range of RL tasks.

By bridging the theory of causal imitation learning with the practical realities of high-dimensional
continuous control, CILBench provides a benchmark that systematically evaluates IL algorithms
under unobserved confounding in realistic environments. We hope that this work will serve both as
a testbed for future CIL methods and as a step toward deploying robust imitation learning systems
in real-world, confounded settings.
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2 Causal Imitation Learning

We model the joint expert–environment system as a structural causal model M = ⟨U, V, F , P (u)⟩,
where U is a set of exogenous (noise) variables, V is a set of endogenous variables, F = {fV : V ∈ V}
are structural assignments, V ← fV (pa(V ), UV ), ∀V ∈ V, and P (u) is a distribution over U. X ⊆ V
is the action set, and Y ∈ U is the latent reward. The induced causal diagram G has one node
for each V ∈ V, directed edges from pa(V ) into V , and bidirected edges between variables with a
shared unobserved parent. In our setting, V includes states, actions, rewards, and latent environment
variables.

The imitator does not observe all of V. We partition the endogenous variables into

VO ⊆ V (observed to the imitator), VL = V \VO (latent to the imitator).

The expert demonstrations reflect the joint observational distribution P (VO), whereas the imitator,
operating under its own policy, induces the interventional distribution P (V | do(π)). In the presence
of latent variables VL, these two distributions may differ substantially: correlations between observed
variables and expert actions may be driven by unobserved confounders rather than causal structure.
The role of causal imitation learning is therefore to determine, for each time step t, which subset of
observed variables Zt ⊆ VO is sufficient for constructing an unbiased approximation of the expert’s
decision mechanism, πt(xt | Zt) ≈ P (Xt | Zt), in a way that is stable to the removal of latent
confounding.

To formalize this requirement, the sequential π-backdoor criterion graphically characterizes what
each Zt must contain so that conditioning on Zt blocks all spurious (noncausal) paths from Xt to
the final outcome Y .
Definition 1 (Sequential π-Backdoor Criterion (Kumor et al., 2021)). Let G be the causal diagram
induced by the SCM. For each action Xt, define a manipulated graph G

′

t obtained by: (i) removing
all incoming edges into future actions Xt+1:H , and (ii) replacing each future action Xj (j > t) by a
node whose parents are restricted to Zj . A family of sets {Zt}H

t=0 satisfies the sequential π-backdoor
for (G, X, Y ) if, for every t, (Xt ⊥⊥ Y | Zt)(G

′
t)Xt

or Xt /∈ AnG
′
t
(Y ). Here (G′

t)Xt
denotes the

graph obtained from G
′

t by deleting outgoing edges from Xt.

When {Zt} satisfies Definition 1, conditioning on Zt removes all confounding and noncausal de-
pendencies between Xt and Y that arise from shared latent parents in VL, proxy variables, or
unobserved factors influencing both the expert’s action and future state transitions. Crucially, Zt is
restricted to the imitator’s observation set VO. If some component of the true backdoor set lies in
VL, it becomes an unobserved confounder and the imitator cannot recover the expert’s conditional
policy P (Xt | Zt) without bias. In such cases, naive behavioral cloning on all available observations
incorrectly conditions on variables that violate the backdoor separation, amplifying confounding
rather than removing it and ultimately failing to imitate. Learning a conditional policy P (Xt | ZO

t )
where ZO

t ⊂ VO and ZO
t ⊂ Zt, however, can approximate the expert policy despite the broken

imitability condition.

The sequential π-backdoor criterion therefore provides the formal grounding for the adjustment sets
used throughout CILBench. These sets determine which components of the observed state history
are safe and necessary to condition on, and which should be excluded to avoid encoding spurious
dependencies introduced by latent confounders. Due to the impracticality of the algorithm for
environments of CILBench’s size, we approximate the criterion by exploiting structural properties
of the environments as seen in Appendix A.

2.1 Example Confounded Sequential Graph

To ground the discussion, we consider the high-level sequential causal diagram in Fig. 1 that is a
generalization of CILBench environments. St are endogenous state variables, Xt are actions, Wt
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Figure 1: High-level causal diagram for a confounded sequential control setting. States St evolve
under actions Xt, while latent variables jointly influence the evolution of S, the decision of X, the
spurious measurements W , and the outcome Y . The imitator observes {S, W}, while the expert
may condition on additional state components represented by bidirected edges to X.

are endogenous state variables that are spurious or noisy measurements, and Y is the terminal
reward (e.g., success/failure). Solid arrows encode causal influences while bidirected edges encode
unobserved confounding through exogenous state variables.

In this diagram, the expert’s policy at time t is a function of St and the unobserved confounders
shown through bidirected edges into Xt. The terminal outcome Y depends on the entire trajectory
through St+1:H and latent influences.

From the perspective of the sequential π-backdoor, valid adjustment sets Zt for Xt must not condition
on the spurious Wt when these act as proxies for latent confounders or colliders. In particular, if Wt is
a noisy function of an unobserved disturbance that also affects transitions and reward, conditioning
on Wt may create spurious associations between Xt and Y along paths that are blocked in the
interventional regime. For this reason, in CILBench environments the correct backdoor sets for
actions must be built from subsets of the physical state S alone, and not include the W -nodes.

3 Environment Design

CILBench is constructed by taking existing continuous-control tasks from OGBench, wrapping them
in SCMs ⟨U, V, F , P (u)⟩ that induce latent confounding and partial observability, and providing
a Pearl Causal Hierarchy (PCH) interface (Bareinboim et al., 2022) that exposes observational,
interventional, and counterfactual modes required by causal imitation algorithms.

For example, consider the AntMaze environment. We parameterize the underlying MuJoCo state
at time t into the following endogenous variables:

• Pt ∈ R3: torso position,

• Ot ∈ R4: torso orientation quaternion,

• At ∈ R8: joint angles,

• Lt ∈ R3: torso linear velocity,

• Tt ∈ R3: torso angular velocity,

• Jt ∈ R8: joint angular velocities,

• Xt ∈ R8: joint torque action,

• YH ∈ R: latent terminal reward at horizon H.
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For imitation learning, we make Ot observable only to the expert. To induce confounding, we
introduce an exogenous two-dimensional wind field Ut ∈ R2 that evolves stochastically over time
and is never observed by neither the imitator nor the expert. This wind exerts a horizontal force
on the torso body at each time step, perturbing the true transition dynamics. We also define an
observed but noisy heading sensor Wt ∈ R2 as a mixture of the agent’s yaw-based heading (Ot)
and the normalized wind direction (Ut), with added Gaussian noise and a risk of distribution shift
between environment instances. Intuitively, Wt acts as a corrupted proxy that is confounded with
YH through Ut and, to the imitator, Xt and other state variables through Ot. The SCM dynamics
are implicitly given by the MuJoCo simulator and our confounder injection:

Pt+1, Ot+1, At+1, Lt+1, Tt+1, Jt+1 ← fMuJoCo(Pt, Ot, At, Lt, Tt, Jt, Xt, Ut),
Ut+1 ← fU (Ut, ϵU

t ),
Wt ← fW (Ot, Ut, ϵW

t ),
YH ← fY (PH , U0:H),

where fU is a piecewise-constant gust process, fW combines orientation and wind direction, and fY

encodes success-at-goal with a penalty proportional to wind magnitude and distance-to-goal. The
induced causal graph includes directed edges capturing the physical dependencies (e.g., Jt → At,
Lt → Pt, Xt → Jt+1) and bidirected edges representing unobserved common causes, such as between
Wt and YH via Ut, as detailed in Appendix B.

3.1 Expert Demonstrations

Expert policies in CILBench are constructed using offline-to-online RL detailed in Algorithm 1. For
each environment, we begin by training a goal-conditioned behavioral cloning policy on provided
demonstrations from the base OGBench environment. This policy provides an initialization that
captures the global structure of the task, but it is not yet ready for the confounders introduced
in the modified environment. To obtain an expert that reflects performance under the confounded
dynamics, we then fine-tune this BC policy through a period of off-policy TD3-style actor–critic
training. Reward shaping is added optionally during fine-tuning to compensate for the sparse reward
signals in long-horizon tasks. The result of this stage is a strong expert policy capable of operating
effectively under the latent disturbances, partial observability, and altered transition dynamics of
the confounded environment. Collecting expert demonstrations is done through the environment’s
PCH wrapper by calling env.see().

Algorithm 1 Full Imitation Learning Procedure
Require: OGBench dataset DOG, confounded env Econf, lookback k.

1: Train BC expert on OGBench: πBC = arg minπ E(s,a)∼DOG

[
ℓ(π(s), a)

]
.

2: TD3 fine-tuning in confounded env: initialize replay buffer; pretrain critics offline; fine-tune
actor online to obtain expert πexp.

3: Compute windowed adjustment: apply Algorithm 2 to get {ZH
t } and Slots.

4: Collect expert trajectories in Econf: zt = Encode(o≤t; ZH
t , Slots).

5: If Causal BC: π̂θ = arg minπ E(zt,at)
[
ℓ(π(zt), at)

]
.

6: If Causal GAIL: train discriminator Dω(z, a) and actor πθ(a | z) via

max
π

Eπ[ log Dω(z, a) ] + Eexp[ log(1−Dω(z, a)) ],

with PPO/GAE updates on windowed features.
7: return the trained causal imitator π̂CIL (BC or GAIL variant).

3.2 Evaluation Protocol

Policies are evaluated based on measures including average return E[
∑H−1

t=0 rt], task-specific success
rate, and summary statistics of trajectory-level outcomes (e.g., distance to goal).
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Figure 3: Position heatmaps for expert, causal, and naive policies on AntMaze. The expert and
causal imitator reliably reach the goal region, while naive imitation collapses near the start.
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Figure 2: Evaluation returns for AntMaze-
Medium and AntMaze-Large. Causal
variants consistently outperform naïve
methods across scales. (Ignore erroneous bot-
tom plot title.)

We evaluate imitation learning under confounding in
two representative long-horizon tasks from CILBench:
AntMaze-Medium and AntMaze-Large. For each en-
vironment, we compare four algorithms: Naive BC,
Causal BC, Naive GAIL, and Causal GAIL. All models
share identical architectures, optimizers, and training
schedules; causal variants differ only in the condition-
ing sets used by their encoders. This isolates the effect
of causal adjustment from architectural or algorithmic
confounds.

Policies are deployed in interventional mode using the
PCH wrapper (env.do()), ensuring that evaluation
measures the performance of the learned policy rather
than confounded observational statistics. We report
average episode return, task-specific success rate, and
qualitative trajectory summaries. Each result is aver-
aged over multiple episodes with fixed seeds for compa-
rability.

4.1 AntMaze Navigation

AntMaze requires navigating a quadruped robot
through a maze to a distant goal over a horizon of
H = 1000. In the confounded version, the MuJoCo
dynamics are perturbed by a latent wind field, and the
expert has access to privileged orientation information
hidden from the imitator. The imitator instead receives
a mixed proxy sensor Wt that combines orientation and
wind direction, making it a confounded measurement
that violates the sequential π-backdoor criterion. Ex-
pert policies are obtained following the offline-to-online
pipeline described in Algorithm 1.
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4.2 Results
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Figure 4: GAIL learning dynamics on AntMaze-
Medium. Causal GAIL eventually surpasses Naive
GAIL in discriminator-derived reward, correspond-
ing to improved downstream performance.

Figure 2 summarizes quantitative results.
Causal BC and Causal GAIL reliably reach
the goal in AntMaze-Medium, achieving sub-
stantially higher returns and success rates
than their naive counterparts, which fail to
make meaningful progress beyond the start
region. Trajectory heatmaps in Figure 3 con-
firm that naive IL encodes spurious dependen-
cies arising from the confounded proxy sensor
and stalls early in the maze, while causal vari-
ants reproduce the expert’s global navigation
strategy.

On AntMaze-Large, where solving the maze is
significantly more difficult, the same pattern
persists: naive IL collapses, while causal variants recover competitive expert-level behavior. Learning
curves in Figure 4 further illustrate that the discriminator in Causal GAIL yields a reward signal
that supports stable policy improvement, whereas Naive GAIL’s discriminator overfits to spurious
proxy correlations.

Across both tasks, the magnitude of the gap between causal and naive variants demonstrates that
correct adjustment of conditioning variables is the key determinant of performance in confounded
long-horizon control, overshadowing differences between supervised (BC) and adversarial (GAIL)
training.

5 Discussion

The experiments highlight several phenomena that are difficult to observe in standard unconfounded
benchmarks but become explicit in the confounded, long-horizon settings of CILBench.

5.1 Failure Modes of Naive Conditioning

Across all settings, naive IL fails not by small margins but by converging to qualitatively incorrect
behavior. This is consistent with the sequential π-backdoor theory: conditioning on proxy variables
that are influenced by latent confounders opens noncausal paths between the action and outcome
variables. In practice, this induces stable but incorrect action mappings that reflect spurious ob-
servational dependencies rather than the expert’s decision rule. The fact that this failure persists
despite expressive function approximators and adversarial training indicates that representation-level
confounding, rather than lack of optimization, is the central obstacle.

5.2 Primacy of Causal Conditioning Over Algorithmic Sophistication

Once the adjustment sets are correctly specified and encoded, the performance gap between Causal
BC and Causal GAIL is significantly smaller than the gap between causal and naive variants. This
suggests that, under confounding, the dominant factor affecting IL performance is the choice of
conditioning variables, not the choice of learning paradigm. Adversarial IL methods cannot recover
the expert policy when the discriminator operates on confounded features, as it is incentivized to
exploit spurious expert–imitator differences. The windowed causal representation eliminates these
differences, enabling both BC and GAIL to approximate the expert policy effectively.
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5.3 Designing Confounded Benchmarks with Controlled Difficulty

Constructing environments that meaningfully stress-test causal IL requires balancing two competing
factors: (i) the confounders must be strong enough to falsify the NUC assumption and induce
observable degradation in naive IL, yet (ii) expert behavior must remain recoverable using variables
available to the imitator. CILBench’s construction—based on latent forces, hidden state components,
and proxy sensors—provides a controlled setting where sequential π-backdoor adjustment remains
feasible, informative, and computationally tractable after windowing. This offers a template for
designing future confounded benchmarks in both simulation and real-robot domains.

5.4 Connections to Causal RL and Representation Learning

The windowed adjustment sets produced in CILBench function as structured, causally justified rep-
resentations. Rather than learning arbitrary embeddings, we restrict policy inputs to variables that
satisfy a truncated sequential π-backdoor criterion. This connects CILBench to broader efforts in
causal reinforcement learning and causal representation learning, where explicit structural restric-
tions are used to separate causal from spurious information. Our results suggest that such structure
is essential when transitioning imitation algorithms from small synthetic domains to long-horizon
continuous-control tasks.

5.5 Limitations

Our confounders are hand-designed and time-homogeneous; extending CILBench to settings with
unknown or nonstationary confounders is an important direction for future work. Moreover, while
the windowed adjustment procedure scales to the horizons considered here, more general causal
structures may require adaptive or learned temporal scopes. Finally, our evaluation focuses on BC
and GAIL; a broader study including AIRL, offline RL variants, and model-based causal methods
would provide a more complete picture of how causal adjustment interacts with diverse IL algorithms.

6 Conclusion

CILBench establishes a foundation for studying imitation learning in settings where unobserved
confounding and partial observability are not edge cases but intrinsic features of real decision-making
systems. By enabling controlled, high-dimensional evaluations grounded in structural causal models,
the benchmark creates a bridge between causal inference, continuous-control RL, and robotics,
allowing these communities to investigate questions previously confined to toy domains.

The broader impact of such a platform is twofold. First, it provides a scientifically grounded way
to stress-test IL algorithms under conditions resembling those encountered in real-world embodied
agents whose sensors or internal states differ from those available during deployment. Second, it
offers a unifying testbed for causal-representation and robust-policy research, allowing methods
from adjacent fields—causal discovery, partial identification, counterfactual RL—to be evaluated in
environments where latent structure is explicitly defined and manipulable.

CILBench is designed to be extensible: new confounded variants of manipulation, locomotion, or
multi-agent tasks can be added simply by specifying an SCM and observation map. We envision the
benchmark evolving into a shared repository of confounded environments, supporting systematic
comparisons across causal and non-causal algorithms and accelerating progress toward decision-
making systems that remain reliable under hidden disturbances, missing sensors, and distribution
shift.

Ultimately, the benchmark aims to catalyze a shift in how imitation learning is evaluated: from
assuming idealized, fully observed MDPs to rigorously accounting for latent structure and its con-
sequences. We hope CILBench will serve as a stepping stone toward the development of robust,
causally grounded agents capable of operating safely and effectively in the complex, confounded
environments that characterize real-world control.
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A Causal Adjustment in High-Dimensional Long-Horizon Environments

The sequential π-backdoor criterion (Def. 1) gives a graphical solution to the adjustment problem in
confounded sequential decision-making. However, naively applying it to modern continuous-control
tasks quickly becomes intractable. A single episode in our antmaze setting has horizon H = 1000,
with state dimension on the order of tens of real-valued variables. Unrolling the SCM over the
full horizon yields a graph with O(H) time-indexed copies of each endogenous variable (states,
actions, auxiliary measurements, rewards), and potentially dense bidirected structure induced by
latent confounders. In such graphs, the FINDOX procedure of Kumor et al. (2021) (which returns
the maximal admissible set VO

X for sequential π-backdoor adjustment) must operate over thousands
of nodes, and the resulting π-backdoor sets {Zt} may grow linearly in H even when the underlying
dynamics are Markovian. From the perspective of function approximation, this implies that a policy
network at time t may need to condition on the full history of observed states and actions, which is
statistically inefficient and computationally prohibitive.

Algorithm 2 Feasible Windowed Sequential π-Backdoor Adjustment
Require: Lookback k, full horizon H.

1: Construct proxy environment Ek with horizon h = k + 1 and extract its causal graph Gk.
2: Compute the observable parent map OX on Gk (FINDOX).
3: Determine Markov boundary MB and boundary actions BA in the ancestral graph.
4: for t = 0, . . . , h− 1 do
5: Compute Zk

t ⊆ VO satisfying the sequential π-backdoor criterion on Gk.
6: end for
7: for Xi ∈ X do
8: Zt =

{
(v, τ) | (v, τ − (t− (h− 1))) ∈ Zk

h−1
}

.
9: end for

10: for t = 0, . . . , H − 1 do
11: ZH

t = { (v, τ) ∈ Zt | τ ≥ t− k }.
12: end for
13: Build window specification Slots by enumerating lags {−1, . . . ,−k} for each observed variable

V ∈ VO with its dimension.
14: return {ZH

t }H−1
t=0 , Slots.

To make causal adjustment feasible in this regime, we exploit two structural properties of the
environments in CILBench. Firstly, the SCM is time-homogeneous, and each time slice has the
same local structure: the parents and children of a variable at time t are isomorphic to those at time
t + 1, up to boundary effects at the start and end of the episode. Secondly, confounding and causal
influence have a bounded temporal span: there exists a window length k such that, conditional on
the last k time steps of the relevant observed variables, older history does not change the admissible
adjustment set for Xt with respect to Y .1 Under these assumptions, we can (i) solve the sequential
π-backdoor problem on a short-horizon proxy graph, (ii) reuse the resulting backdoor structure
across time by shifting indices, and (iii) trim each Zt to a fixed lookback window of length k. We
now formalize this pipeline as an algorithm that takes as input the causal graph of a confounded
environment and outputs a windowed representation suitable for high-dimensional CIL.

B Expanded Causal Graphs

1Formally, we assume that the ancestors of Xt and Y that lie in the imitator’s observation set can be reasonably
captured within a fixed-width window of length k in the unrolled graph. In our environments, this corresponds to the
Markovian nature of the MuJoCo dynamics together with confounders that do not have arbitrarily long memory.
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Figure 5: AntMaze
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C Implementation Details

This section summarizes the implementation choices common to all experiments in CILBench, in-
cluding environment construction, expert training, causal adjustment, model architectures, and op-
timization settings. All experiments were conducted on a machine equipped with an NVIDIA H100,
using PyTorch 2.4.0.

Environment Wrapper and SCM Integration. Each OGBench environment is wrapped in
a Pearl Causal Hierarchy (PCH) interface that exposes see() for observational rollouts, do() for
interventional evaluation, and accessors for internal endogenous variables. Latent confounders are
injected via a structural equation for an exogenous wind field whose dynamics are governed by a
piecewise-constant stochastic process with refresh interval 5 steps. Partially observed variables (e.g.,
heading measurements) are computed as noisy functions of both observable state components and
latent confounders. All confounders and auxiliary measurements are integrated into the causal graph
extracted from the environment at initialization.

Expert Training. Experts are obtained through a two-stage pipeline. First, we train an offline
behavioral cloning policy on the OGBench dataset using a fully observed state representation. The
BC policy uses a residual MLP with hidden dimension 256, activation SiLU, and 4 residual blocks.
Second, the BC policy is fine-tuned under the confounded environment using a TD3-style actor–critic
algorithm with target smoothing coefficient 5×10−3, policy delay 2, discount factor 0.99, and batch
size 256. Fine-tuning is run for 300, 000 environment steps or until convergence. The resulting
expert is then used to collect demonstrations via env.see() using deterministic execution.

Sequential Adjustment and Windowed Encoding. Adjustment sets are computed using the
windowed sequential π-backdoor procedure (Algorithm 2) with lookback k ∈ {1, 2, 3, 5}. The proxy
graph is constructed from a short-horizon environment of length k + 1, and the base adjustment
sets are shifted along the full horizon and trimmed to retain only variables within the last k steps.
For each observed variable V with dimension dV , we construct window slots of shape (k, dV ) and
represent each time-t encoding vector zt as the concatenation of all selected slots, yielding input
dimension 42 for the actor, critic, and discriminator. Continuous variables are normalized using
running statistics computed from expert trajectories; categorical variables are one-hot encoded.

Network Architectures. All imitation policies (BC or GAIL, causal or naive) use the same
family of networks to ensure architectural parity.

• Actor: a residual MLP based on ContinuousActor, with hidden size 256, depth 3 residual
blocks, dropout 0.05, and SiLU activations. Actions are parameterized via a Gaussian with
state-independent log-variance and squashed through tanh to match environment bounds.

• Critic: identical residual architecture mapping zt to a scalar value estimate.

• Discriminator: a residual MLP of hidden size 256 applied to concatenated (zt, at) pairs;
trained with BCE or WGAN-style losses depending on the experiment.

Behavioral Cloning. Causal BC is trained with Huber loss and Adam optimizer (learning rate 3×
10−4, batch size 2048, early stopping patience 15). Naive BC conditions on all observable variables;
causal BC uses only windowed adjustment features. Training runs for 1000 epochs with validation
split 80/20.

GAIL Training. Causal and naive GAIL share identical optimization hyperparameters:

• Rollouts: each GAIL round collects 10 episodes up to horizon H = 1000 using stochastic
actor sampling.
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• GAE/PPO: advantages computed with (γ, λ) = (0.99, 0.95); PPO uses clip ratio 0.2,
minibatch size 1024, and 10 epochs per update.

• Discriminator: updated 3 times per round with minibatch size 1024, gradient penalty
weight 10.0, and instance noise standard deviation 0.0.

All networks are optimized with Adam (learning rates: actor 1× 10−4, critic 3× 10−4, discrimina-
tor 3× 10−4).

Evaluation. Policies are evaluated in interventional mode using env.do(), with deterministic ac-
tions for BC and with mean-action execution for GAIL. Each reported metric averages over 1000
episodes with fixed seeds. Additional visualizations (state trajectories, heatmaps, return distribu-
tions) are provided in Appendix D.

All code, including environment wrappers, adjustment-set utilities, and training pipelines for BC
and GAIL, is packaged with CILBench to support future extensions and reproducibility.

D Additional Visualizations

This appendix provides supplementary visualizations that complement the quantitative results in
Section 4. We include learning dynamics, trajectory summaries, return distributions, and success
metrics for both AntMaze-Medium and AntMaze-Large. All evaluations are performed in interven-
tional mode using the PCH wrapper.

D.1 Return Distributions
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Figure 6: Distribution of raw episode returns across algorithms on AntMaze-Medium. Causal meth-
ods achieve significantly higher and more stable returns than naive baselines.
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D.2 Success Lengths
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Figure 7: Distribution of episode lengths among successful rollouts in AntMaze-Medium. The
expert achieves the shortest paths; causal BC and GAIL follow with slightly longer trajectories;
naive methods have no successful episodes.

D.3 Success Rates
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Figure 8: Success rate across 1000 evaluation episodes for AntMaze-Medium. Causal BC and Causal
GAIL significantly outperform naive baselines, which never succeed.
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D.4 Discriminator Diagnostics
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Figure 9: Discriminator loss during GAIL training on AntMaze-Medium. Naive GAIL exhibits a
lower discriminator loss than Causal GAIL, suggesting overfitting to spurious features created by
latent confounding. In contrast, the causal representation forces the discriminator to attend only to
deconfounded state information, preventing collapse.
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